

RFID+: Spatially Controllable Identification of UHF RFIDs via Controlled Magnetic Fields

Donghui Dai, Zhenlin An, Zheng Gong, Qingrui Pan, Lei Yang

Department of Computing The Hong Kong Polytechnic University

SH17/

99/10000 99/10000 99/10000 99/10000 99/10000 99/10000 99/100 miss-reading anomaly cross-reading anomaly

The propagation behavior of ultra-high frequency RF signals

The propagation behavior of ultra-high frequency RF signals

The propagation behavior of ultra-high frequency RF signals

miss-reading: multipath signals destructively combine within ROI

The propagation behavior of ultra-high frequency RF signals

miss-reading: multipath signals destructively combine within ROI cross-reading: multipath signals constructively combine beyond ROI

The propagation behavior of ultra-high frequency RF signals

The propagation behavior of magnetic signals

The propagation behavior of magnetic signals

The propagation behavior of magnetic signals

High penetrability: no destructively combined signals within ROI

The propagation behavior of magnetic signals

High penetrability: no destructively combined signals within ROI **Rapid attenuation:** no constructively combined signals beyond ROI

The propagation behavior of magnetic signals

Is it possible to utilize a magnetic field in powering the inventory process of UHF RFIDs?

Inductive Coupling via Matching Loops

Every RFID tag inherently incorporates a single-turn coil, i.e., a matching loop.

Inductive Coupling via Matching Loops

Every RFID tag inherently incorporates a single-turn coil, i.e., a matching loop.

Structure of a Typical UHF RFID Tag

10 Popular UHF RFID Tags

Inductive Coupling via Matching Loops

Every RFID tag inherently incorporates a single-turn coil, i.e., a matching loop.

Structure of a Typical UHF RFID Tag

10 Popular UHF RFID Tags

Inductive coupling: the matching loop can capture magnetic field energy and then power the tag for communication.

Experiment Validation

Experiment Validation

Tx: Coil antenna and Patch antenna, respectively

Experiment Validation

- Tx: Coil antenna and Patch antenna, respectively
- Tags: modified tag whose dipole antenna is cut off

Experiment Validation

- Tx: Coil antenna and Patch antenna, respectively
- Tags: modified tag whose dipole antenna is cut off
- **Rx:** USRP X310 as Receiver to sniff communication

Experiment Validation

- **Tx:** Coil antenna and Patch antenna, respectively
- Tags: modified tag whose dipole antenna is cut off
- **Rx:** USRP X310 as Receiver to sniff communication

Tx: Patch Antenna (Electrical)

No signal can be detected because the tags' dipole antenna is cut off

Experiment Validation

- **Tx:** Coil antenna and Patch antenna, respectively
- **Tags:** modified tag whose dipole antenna is cut off
- Rx: USRP X310 as Receiver to sniff communication

Tx: Patch Antenna (Electrical)

No signal can be detected because the tags' dipole antenna is cut off

Tx: Coil Antenna (Magnetic)

Reply signal can be detected even when the tags' dipole antenna is cut off

No signal can be detected because the tags' dipole antenna is cut off

COTS RFID tags can be activated and queried using magnetic fields while the protocol remains consistent

- **Tx:** Coil antenna and Patch antenna, respectively
- **Tags:** modified tag whose dipole antenna is cut off
- Rx: USRP X310 as Receiver to sniff communication

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Time (ms)

Reply signal can be detected even when the tags' dipole antenna is cut off

First spatially controllable magnetically-driven UHF RFID inventory system

- First spatially controllable magnetically-driven UHF RFID inventory system
- Introduce techniques for innovative coil antenna designs and a fast inventory algorithm

- First spatially controllable magnetically-driven UHF RFID inventory system
- Introduce techniques for innovative coil antenna designs and a fast inventory algorithm
- Achieves a 99% discovery rate and nearly zero crossingreading within the region of interest (ROI)

Challenge 1:

How to generate a uniformly distributed magnetic field at the UHF band?

Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands

Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands

Wavelength: λ Coil Perimeter: C

 $\lambda \approx 22m$ $\lambda \gg C$

HF: 13.56MHz

HF band: the current around the loop **can** remain almost in phase and of the same sign; thus, it **can** produce a uniform strong magnetic field.

Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands

Wavelength: λ Coil Perimeter: C

 $\lambda \approx 22m$ $\lambda \gg C$ $\lambda \approx 33 \text{cm}$ $\lambda \sim \text{C}$

blind zone

HF: 13.56MHz

UHF: 920MHz

UHF band: the current around the loop **cannot** remain almost in phase and of the same sign; thus, it **cannot** produce a substantial magnetic field.

Traditional Coil

Capacitor-Segmented Coil

Traditional Coil

Capacitor-Segmented Coil

Segmenting the loop physically and inserting capacitors between adjacent segments. Each segment can be modeled as an equivalent RLC circuit.

Traditional Coil

Capacitor-Segmented Coil

Such RLC circuits guarantee that the RF signal retains a uniform initial phase shift across segments and no out-of-phase magnetic field is generated.

Traditional Coil Capacitor-Segmented Coil

The capacitor-segmented coil can maintain the loop's small size while guaranteeing a uniform magnetic field distribution

Multi-turn coils can spread magnetic energy more uniformly

Multi-turn coils can spread magnetic energy more uniformly

One Coil

Multi-turn coils can spread magnetic energy more uniformly

Multi-turn coils can spread magnetic energy more uniformly

Prototype

Four Coils

A four-turn design can achieve a balance between maximum magnetic intensity and minimizing the mutual coupling effect among coils.

Challenge 2:

How to precisely manipulate the magnetic field to achieve spatially controllable reading?

Bi-directional Magnetic Field Distribution

A coil antenna

Bi-directional Magnetic Field Distribution

A coil antenna

Simulated magnetic intensity of a coil antenna in Z-axis

Bi-directional Magnetic Field Distribution

A coil antenna

Simulated magnetic intensity of a coil antenna in Z-axis

How to confine the bi-directional magnetic field distributed in one direction only?

HIS reflector

Bird's-eye view

Bird's-eye view

Bird's-eye view

The magnetic field's reflected phase by the HIS is $\theta = \text{Im}\left(\ln\left(\frac{Z_{\text{HIS}} - \eta_0}{Z_{\text{HIS}} + \eta_0}\right)\right)$

The magnetic field's reflected phase by the HIS is $\theta = \text{Im}\left(\ln\left(\frac{Z_{\text{HIS}} - \eta_0}{Z_{\text{HIS}} + \eta_0}\right)\right)$

At resonant frequency, $\omega=\widehat{\omega}$

The magnetic field's reflected phase by the HIS is $\theta = \text{Im}\left(\ln\left(\frac{Z_{\text{HIS}} - \eta_0}{Z_{\text{HIS}} + \eta_0}\right)\right)$

At resonant frequency, $\omega = \widehat{\omega} \implies Z_{\mathrm{HIS}} \to +\infty$

At resonant frequency, $\omega = \hat{\omega} \implies Z_{\text{HIS}} \rightarrow +\infty \implies \theta \approx 0$

The reflected magnetic field has zero phase shift and thus it can constructively combine with the forward-propagating field

At resonant frequency, $\omega = \hat{\omega} \implies Z_{\text{HIS}} \rightarrow +\infty \implies \theta \approx 0$

The reflected magnetic field has zero phase shift and thus it can constructively combine with the forward-propagating field

At resonant frequency, $\omega = \hat{\omega} \implies Z_{\text{HIS}} \rightarrow +\infty \implies \theta \approx 0$

More Precisely Spatial Controllability

A coil array can further enhance RFID+'s spatial controllability in fine-grain

More Precisely Spatial Controllability

A coil array can further enhance RFID+'s spatial controllability in fine-grain

Magnetic Beamforming

More Precisely Spatial Controllability

A coil array can further enhance RFID+'s spatial controllability in fine-grain

Magnetic Beamforming

Architecture of Near-Field Reader

Challenge 3:

How to quickly detect all tags in a brief timeframe to ensure a smooth customer experience?

Scenario1: Checkout Lane

Scenario2: Belt Conveyor

Scenario1: Checkout Lane

Scenario2: Belt Conveyor

Short Response Time: RFID system has only several seconds to react

Scenario1: Checkout Lane

Scenario2: Belt Conveyor

- **Short Response Time:** RFID system has only several seconds to react
- High Throughput: About 100-200 tags need to be detected at each time

Scenario1: Checkout Lane

Scenario2: Belt Conveyor

- Short Response Time: RFID system has only several seconds to react
- High Throughput: About 100-200 tags need to be detected at each time
- **Massive Collision:** Nearly 74% of the time is lost to channel contention

Prefetching: combines both radiatively- and magnetically-driven RFID systems together to enhance the reading speed within ROI.

Prefetching: combines both radiatively- and magnetically-driven RFID systems together to enhance the reading speed within ROI.

Top View of a Checkout Lane

Prefetching: combines both radiatively- and magnetically-driven RFID systems together to enhance the reading speed within ROI.

Phase 1: the far-field reader identifies a set of candidate tags in advance. The collected EPCs are then used to construct a Candidate Bloom Filter (BF).

Top View of a Checkout Lane

Prefetching: combines both radiatively- and magnetically-driven RFID systems together to enhance the reading speed within ROI.

Phase 1: the far-field reader identifies a set of candidate tags in advance. The collected EPCs are then used to construct a Candidate Bloom Filter (BF). Phase 2: the near-field reader uses previously obtained BF to check for the presence of tags within the ROI quickly.

Top View of a Checkout Lane
Dual-Coupling Inventory Strategy

Prefetching: combines both radiatively- and magnetically-driven RFID systems together to enhance the reading speed within ROI.

Phase 1: the far-field reader identifies a set of candidate tags in advance. The collected EPCs are then used to construct a Candidate Bloom Filter (BF).
Phase 2: the near-field reader uses previously obtained BF to check for the

The acquisition overhead is reduced by approximately 60% by using Bloom Filter to speed up the inventory process

Implementation

Implementation

- **Reader:** USRP X310 software-defined radios
- Beamformer: Raspberry Pi 4 Model B + Phase Shifter (PHSA-152)
- Tx: Custom-designed 2 × 2 coil antenna array + HIS reflectors

Inventory Accuracy

Inventory Accuracy

In the test, a dense collection of 100 tags was fixed to a flat surface. The accuracy was measured based on the discovery rate

Inventory Accuracy

In the test, a dense collection of 100 tags was fixed to a flat surface. The accuracy was measured based on the discovery rate

RFID+ excels in detecting tags within ROI up to 175cm (>95%), and performance significantly declines beyond this range.

Spatial Manipulation

Spatial Manipulation

We directed the beamforming's focus to five positions along the Z-axis. For each position, the tag's backscattered signal strength was measured.

Spatial Manipulation

We directed the beamforming's focus to five positions along the Z-axis. For each position, the tag's backscattered signal strength was measured.

The beamforming focal point increases the average received signal strength by approximately 7.73 dB at these locations.

Inventory Efficiency

Inventory Efficiency

We compared the proposed dual-coupling fast inventory algorithm against the conventional Q-adaptive inventory method.

Inventory Efficiency

We compared the proposed dual-coupling fast inventory algorithm against the conventional Q-adaptive inventory method.

The fast inventory achieves discovery in just 2.4 seconds, saving 36.8% of the time compared to the Q-adaptive algorithm.

We tested RFID+ in a textile factory warehouse and a conveyor scanning gateway.

We tested RFID+ in a textile factory warehouse and a conveyor scanning gateway.

RFID+ achieved about 1.95% miss-reading rate and nearly 0.1% cross-reading rate within a reasonable time slot.

Conclusion

Conclusion

 We first demonstrate that a magnetically-driven UHF RFID system is feasible and valuable.

USENIX NSDI 2024

Conclusion

- We first demonstrate that a magnetically-driven UHF RFID system is feasible and valuable.
- We first integrate disparate elements (e.g., capacitor-segmented loops, multi-turn coils, HISs, coil arrays, etc.) into a unified practical RFID inventory system.

USENIX NSDI 2024

Conclusion

- We first demonstrate that a magnetically-driven UHF RFID system is feasible and valuable.
- We first integrate disparate elements (e.g., capacitor-segmented loops, multi-turn coils, HISs, coil arrays, etc.) into a unified practical RFID inventory system.
- We achieve a 1.95% miss-reading rate and nearly 0.1% cross-reading rate in a pilot study.