RFID+: Spatially Controllable Identification
of UHF RFIDs via Controlled Magnetic Fields

Donghui Dai, Zhenlin An, Zheng Gong, Qingrui Pan, Lei Yang

Department of Computing
The Hong Kong Polytechnic University



Background

Spatially Controllable RFID Inventory has many applications



Background

Spatially Controllable RFID Inventory has many applications

Warehouses



Background

Spatially Controllable RFID Inventory has many applications



Background

Spatially Controllable RFID Inventory has many applications



Two Anomalies of UHF RFID Systems




Two Anomalies of UHF RFID Systems

miss-reading anomaly



Two Anomalies of UHF RFID Systems

miss-reading anomaly cross-reading anomaly



Two Anomalies of UHF RFID Systems

The propagation behavior of ultra-high frequency RF signals

>

Tag sensitivity

Signal Strength (logscale)

Region of Interest (ROI) © Guard

Distance (logscale)



Two Anomalies of UHF RFID Systems

The propagation behavior of ultra-high frequency RF signals

>

UHF RFID Tag sensitivity

Signal Strength (logscale)

Region of Interest (ROI) © Guard

Distance (logscale)



Two Anomalies of UHF RFID Systems

The propagation behavior of ultra-high frequency RF signals

6‘

E miss-reading anomaly

&

O

5 \

of WFRFDV AN o ion Tag sensitivity
n

g : -

'c% Region of Interest (ROI) . Guard :

4 >
Distance (logscale)

miss-reading: multipath signals destructively combine within ROI



Two Anomalies of UHF RFID Systems

The propagation behavior of ultra-high frequency RF signals

6‘

E miss-reading anomaly

&

O

5 \

of WFRFDV N o Tag sensitivity
n

g : -

'c% Region of Interest (ROI) . Guard :

Distance (logscale)

miss-reading: multipath signals destructively combine within ROI
multipath signals constructively combine beyond ROI



Two Anomalies of UHF RFID Systems

The propagation behavior of ultra-high frequency RF signals
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How to address miss-reading and cross-reading

anomalies simultaneously?
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The propagation behavior of magnetic signals
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Is it possible to utilize a magnetic field in powering the

iInventory process of UHF RFIDs?
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Every RFID tag inherently incorporates a single-turn coil, i.e., a
matching loop.

Matching Loop
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Preliminary Verification

COTS RFID tags can be activated and queried using

magnetic fields while the protocol remains consistent
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and a fast inventory algorithm
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= First magnetically-driven UHF RFID
Inventory system

* Introduce techniques for
and a

= Achieves a discovery rate and nearly crossing-
reading within the region of interest (ROI)
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Challenge 1:

How to generate a uniformly distributed
magnetic field at the UHF band?



Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands



Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands

Wavelength: 1
Coil Perimeter: C

A= 22m

A>C
HF: 13.56MHz

HF band: the current around the loop €an remain almost in phase and of the

same sign; thus, it Can produce a uniform strong magnetic field.




Magnetically Blind Zones at UHF band

Simulated magnetic intensity distribution at HF and UHF bands

Wavelength: 4 .
Coil Perimeter: C blind zone

A= 22m O A =~ 33cm

A>C A~C

HF: 13.56MHz UHF: 920MHz
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Capacitor-Segmented Coil Antenna
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Such RLC circuits guarantee that the RF signal retains a uniform initial phase

shift across segments and no out-of-phase magnetic field is generated.



Capacitor-Segmented Coil Antenna

-

Traditional Coill Capacitor-Segmented Caoll




Multi-turn Spiral Coil Antenna

Multi-turn colls can spread magnetic energy more uniformly



Multi-turn Spiral Coil Antenna

Multi-turn colls can spread magnetic energy more uniformly

One Coll



Multi-turn Spiral Coil Antenna

Multi-turn colls can spread magnetic energy more uniformly
s B A B

!
:
- / ;
“ ’ p - = - » 120
b ~.\ / - /" —4-30
-\
k . | '_. ad 0

One Coll Two Coills Four Colls

=




Multi-turn Spiral Coil Antenna

Multi-turn colls can spread magnetic energy more uniformly
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Prototype Four Colls

A four-turn design can achieve a balance between maximum magnetic

Intensity and minimizing the mutual coupling effect among coils.
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Challenge 2:

How to precisely manipulate the magnetic
field to achieve spatially controllable reading?
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Bi-directional Magnetic Field Distribution

Coil g
Feed'”g outside ROI
Port -10emi-- g

v\ ;

Simulated magnetic intensity
of a coil antenna in Z-axis

How to confine the bi-directional magnetic field

A coil antenna

distributed in one direction only?
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Mushroom-like High-Impedance Surface

HIS reflector Parallel LC circuit

Incident Field —»
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Reflected Field €—

Equivalent circuit

The impedance related to an HIS can be expressed as:
. . jwl jwL ..
Bird‘s-eye view Zuis = 1—2LC  1— (w/@)2 Inflnlty

The magnetic field’s reflected phase by the HIS is @ = Im ln(ZHIS_UO) Zero
e magnetic field’s reflected p y J7——

At resonant frequency, (W — (,Au ‘ ZHIS — 400 ‘ (9 > O
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The reflected magnetic field has zero phase shift and thus it can

constructively combine with the forward-propagating field



Mushroom-like High-Impedance Surface
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The reflected magnetic field has zero phase shift and thus it can

constructively combine with the forward-propagating field
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More Precisely Spatial Controllability

A coil array can further enhance RFID+’s spatial controllability
In fine-grain

Focal Point

Aey X1

Architecture of Near-Field Reader

Magnetic Beamforming
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Challenge 3:

How to quickly detect all tags in a brief timeframe
to ensure a smooth customer experience?
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Dual-Coupling Inventory Strategy

Prefetching: combines both radiatively- and magnetically-driven
RFID systems together to enhance the reading speed within ROI.

4
Prefetching

The acquisition overhead is reduced by approximately 60% by
using Bloom Filter to speed up the inventory process
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Implementation

~"| Raspberry Pi Splitter
Rx Antenna ,* SIPO Converter
Tx Array o
R Reader
Beamformer ,- Phaser x4
Reader Laptop
. Amplifier x4

= Reader: USRP X310 software-defined radios
= Beamformer: Raspberry Pi 4 Model B + Phase Shifter (PHSA-152)

= Tx: Custom-designed 2 x 2 coil antenna array + HIS reflectors
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In the test, a dense collection of 100 tags was fixed to a flat surface. The
accuracy was measured based on the discovery rate
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Inventory Accuracy

In the test, a dense collection of 100 tags was fixed to a flat surface. The
accuracy was measured based on the discovery rate
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RFID+ excels in detecting tags within ROl up to 175cm (>95%)),

and performance significantly declines beyond this range.
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Spatial Manipulation

We directed the beamforming’s focus to five positions along the Z-axis. For
each position, the tag’s backscattered signal strength was measured.
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Spatial Manipulation

We directed the beamforming’s focus to five positions along the Z-axis. For
each position, the tag’s backscattered signal strength was measured.
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The beamforming focal point increases the average received

signal strength by approximately 7.73 dB at these locations.
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Inventory Efficiency

We compared the proposed dual-coupling fast inventory algorithm against
the conventional Q-adaptive inventory method.
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Inventory Efficiency

We compared the proposed dual-coupling fast inventory algorithm against

the conventional Q-adaptive inventory method.
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|

The fast inventory achieves discovery in just 2.4 seconds,

saving 36.8% of the time compared to the Q-adaptive algorithm.
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Pilot Study: Logistic Network Evaluation
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RFID+ achieved about 1.95% miss-reading rate and nearly 0.1%

cross-reading rate within a reasonable time slot.
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Conclusion
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feasible and valuable.



USENIX NSDI 2024 @E&&?ﬁ?ﬁﬁ?ﬁilmmlw

TR TR 22

Conclusion

=  We first demonstrate that a magnetically-driven UHF RFID system is
feasible and valuable.

=  We first integrate disparate elements (e.g., capacitor-segmented
loops, multi-turn coils, HISs, coil arrays, etc.) into a unified
practical RFID inventory system.
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Conclusion

=  We first demonstrate that a magnetically-driven UHF RFID system is
feasible and valuable.

=  We first integrate disparate elements (e.g., capacitor-segmented
loops, multi-turn coils, HISs, coil arrays, etc.) into a unified
practical RFID inventory system.

= We achieve a 1.95% miss-reading rate and nearly 0.1% cross-reading
rate in a pilot study.



